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The underlying estimator for most geostatistical modeling algorithms is Kriging.  There are many variants 
of Kriging.  Each type leads to a system of linear equations built from positive definite covariance models, 
correlations, constraints and/or polynomial coefficients for an external drift.  Resulting systems are solved 
using various techniques such as Gaussian elimination; however, solutions are not always acceptable.  
Research in Geostatistics is yielding more complex techniques such as Direct Sequential Simulation and 
Kriging in the presence of locally varying anisotropy; such techniques may generate systems of equations 
that are close to being non positive definite.  Solutions to these systems can produce extreme solution 
weights or negative Kriging variances.  This paper introduces a robust solver that detects problematic 
systems and makes adjustments so that extreme weights are mitigated and negative variances do not occur. 

Introduction 

Two trends in geostatistical research are resulting in problematic Kriging systems of equations: (1) striving 
to include as much information as possible into the modeling process, and (2) development of more 
complex modeling techniques.  An example of (1) is Bayesian updating (Deutsch and Zanon, 2007).  This 
technique can incorporate many secondary attributes and correlates them to any primary variables of 
interest.  Indefinite correlation matrices have been encountered in this method due to missing data in 
sample sets and contradictory information.  An example of (2) is accounting for locally varying anisotropy 
(Boisvert, Manchuk and Deutsch, 2007).  This method relies on optimization to find the minimum 
anisotropic distance between geospatial data and often yields systems that are geometrically infeasible in 
the dimensionality of the given problem.  In both examples, problematic systems result in extreme solution 
weights and/or negative Kriging variances. 

Many types of Kriging exist for geological modeling: simple, ordinary, universal, collocated, generalized 
cokriging and others.  Application of any one of these Kriging types to modeling of a geological resource 
can involve setting up and solving thousands to millions of systems of equations.  Depending on the type 
and complexity of the modeling technique many unacceptable, i.e. indefinite or ill-conditioned systems, 
may be encountered.  These systems can be referred to as unstable to the cause of Kriging.  It is 
unreasonable to identify all of these problematic systems and analyse them to recover the cause of 
instability.  Causes include contradictory correlations among multiple variables, overly redundant 
information and spatial screening effects.  These are not straightforward problems to identify or correct, 
especially when systems can involve tens to hundreds of equations. 

Solutions to indefinite and/or nearly singular systems of equations may cause one or both of the following: 
extreme solution (Kriging) weights and negative Kriging variance.  Extreme Kriging weights can result in 
excessive estimates of the variable of interest, potentially far beyond the acceptable range of that variable.  
For example, extreme weights in a petroleum context may produce a negative porosity estimate or one that 
is higher that 100%.  The same situation could occur in a mining context for gold grade.  The later result, 
negative Kriging variance, is illogical in terms of assessing uncertainty.  In the context of stochastic 
simulation, Kriging provides a parametric distribution from which a value is randomly drawn.  The 
distribution cannot have negative variance. 

This paper introduces a robust solver specifically for systems of equations built within a Kriging 
framework.  For the remainder of the paper, this solver will be referred to as RSOL.  Input systems are 
constructed in the manner that the type of Kriging demands and with the appropriate covariance model, 
correlation coefficients, constraints and/or polynomial coefficients.  Upon receiving the system for 
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processing, RSOL automatically detects the following problematic cases: (1) extreme Kriging weights, (2) 
negative Kriging variance, and (3) indefinite systems.  Adjustments are made to the system by minimizing 
an objective function that will be discussed.  Minimization was designed to lessen identified problems 
before calculating a final solution. 

Existence of Unstable Systems 

This section of the paper motivates the need for RSOL.  It identifies three situations in geological modeling 
via Kriging that result in unacceptable solution weights and estimates.  The simplest of scenarios shows 
spatial screening with only two conditioning data.  An example of a correlation matrix from inconsistent 
data used in Bayesian updating will be shown next followed by an example of the geometrically infeasible 
systems that can result from locally varying anisotropy. 

Consider two conditioning data used to estimate porosity at an unknown location in 2-dimensional space.  
Conditioning data follow a Gaussian distribution derived from applying a normal score transform to the 
original variable which is from a true data set.  Assume that the underlying covariance structure has already 
been modeled and was found to be isotropic spherical with zero nugget effect and a range, r, of 50 units 
(Equation 1).  The configuration and values of conditioning data relative to the estimate location are 
summarized in Table 1.  The system of equations setup to solve this estimation problem is shown by 
Equation 2 along with the solution weights. 

 ( )( )22( ) 1 1.5 0.5h h
r rhγ σ ⎡ ⎤= − −⎢ ⎥⎣ ⎦

  (1) 

  Table 1: Two data Kriging scenario 
 Porosity Value Easting Northing Normal Score 
Conditioning 1 3.02 34.8 9.4 -1.747 
Conditioning 2 3.52 35.0 9.1 -1.585 
Estimate N/A 5.0 5.0 N/A 

 1.000 0.989 0.240 0.206
0.989 1.000 0.035 0.203
⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (2) 

In this example screening has resulted in a redundant system of equations where the solution weights are 
problematic.  One would expect both samples to receive approximately equal weighting since they are 
nearly equidistance from the estimate location.  This issue of screening can be projected into much more 
complex scenarios where the outcome would cause problems with the estimate and the Kriging variance; 
however, this simple example is useful for explaining the robust solution. 

Another problematic scenario occurs in Bayesian updating, an approach to geological modeling that is 
gaining in popularity due to its ability to incorporate an abundance of secondary information with a simple 
methodology.  Deutsch and Zanon (2007) provide a discussion of the method for interested readers.  One 
component of Bayesian Updating is a correlation matrix that relates all variables.  It is used in calculating a 
likelihood distribution.  Equation 3 shows the system of equation for calculating the likelihood.  It is 
composed of secondary to secondary correlations, ρij, and primary to secondary correlations, ρik, i,j=1,…,n 
and k=1,…,m where n is the number of secondary and m the number of primary variables.  Solution 
weights, λik, are solved column-wise, each column being associated with a particular primary variable. 
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  (3) 

This example uses an actual correlation matrix from the application of Bayesian updating to a reservoir.  
Five secondary variables are used to generate the likelihood distribution for one of the primaries.  The 
system of equations for this scenario (Equation 4) results in a likelihood variance of -0.388.  This is an 
impractical result occurring from poor conditioning of the secondary to secondary correlation matrix.  In 
this case, an ill-conditioned system is caused by two common problems with sample data: (1) missing 
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samples and (2) an inadequate number of samples to maintain a contiguous set for correlation calculations.  
In other cases, indefinite systems may occur. 

 

1.000 0.502 0.226 0.120 0.329 1.365 0.954
0.502 1.000 0.496 0.569 0.273 0.869 0.105
0.226 0.496 1.000 0.832 0.707 0.289 0.
0.120 0.569 0.832 1.000 0.358 0.065
0.329 0.273 0.707 0.358 1.000 0.098

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ =− − −
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦

043
0.191
0.295

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (4) 

A final example will be taken from a recent development in geostatistical modeling, that being Kriging in 
the presence of locally varying anisotropy (LVA).  LVA has been used in the past (Xu, 1996), but not in the 
fashion that it is used in its most recent implementation (Boisvert, 2007).  In this example, the resulting 
system is indefinite and results in problematic weights, an extreme estimate and negative variance.  The 
scenario involves 10 conditioning data positioned through-out a 2-dimensional LVA field (Figure 1).  Table 
2 summarizes the locations of conditioning data and estimate, sample values (synthetic), and the resulting 
solution weights for the initial system. 
 
  Table 2: LVA example data and results. 

Data X Y Value Weight Covariance 

Conditioning 

10 1 6 -0.445 0.869 
10 5 10 0.921 0.893 
18 1 -8 0.958 0.649 
18 5 -5 -0.300 0.623 
2 1 -5 -0.281 0.635 

10 10 -3 -1.325 0.194 
2 5 -10 1.281 0.599 

18 10 -4 -0.025 0.559 
2 10 -12 0.702 0.475 

10 15 12 -0.665 0.006 
Estimate 11 1 -23.36   
Variance   -0.519   

The resulting estimate and variance are unacceptable, especially given the data configuration: the estimate 
is quite close to the top 5 data based on covariances in Table 2 indicating that it should be within the range 
of those data to some extent. 

These three examples have shown that problematic systems are possible from the simplest of Kriging 
algorithms to those that are more complex.  It is imperative that these systems be identified and dealt with 
in applications otherwise unacceptable solutions may be carried through a geostatistical study.  For 
example, some transfer functions such as flow simulation can be very sensitive to extreme values that can 
inject a bias into results.  After describing RSOL in the next sections of this paper, these problematic 
systems will be revisited and the robust solutions analysed. 

RSOL 

There are three components that contribute to the idea of robustly solving a system of equations built within 
a Kriging algorithm: (1) detection of unstable systems, (2) forcing indefinite systems to be positive definite, 
and (3) stabilizing the systems to mitigate undesirable outcomes.  Undesirable outcomes include extreme 
Kriging weights and negative Kriging variances, which will have an impact in other areas of a geostatistical 
modeling application.  These outcomes are used to detect an unstable system.  The following components 
of RSOL will be discussed in more detail: 

• Identifying unstable systems. 

• Indefinite and ill-conditioned systems. 

• Stabilization of the systems. 
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Identifying Unstable Systems 

Detection methods for identifying unstable systems involve first solving the system.  In the event that there 
is no solution, the system of equations is said to be singular.  Singular systems can result in a spatial setting 
if two samples of a particular variable share the same location.  They can also result in Bayesian updating if 
two variables are perfectly correlated.  Occurrences of singular systems are a product of how the systems 
were built or from inadequate cleaning and analysis of input data to a Kriging application.  These systems 
will not be dealt with by RSOL.   

Solution weights and Kriging variance are checked once a system is solved.  Negative Kriging variance is 
straightforward to detect and will not be discussed further.  However, what is the definition of a 
problematic Kriging weight?  It has been noted that negative weights or those greater that 1 may cause 
deranged estimates (Chiles and Delfiner, 1999). 

The definition of a problematic (extreme) weight in this paper does agree that a weight greater than 1 is 
problematic when dealing with standardized covariance; however, this is not the only case.  Consider a 
system of equations in a geospatial Kriging context: covariance values between conditioning data and a 
location to estimate are a measure of the information those conditioning data can provide.  If solution 
weights are considered to be a ratio of that information that is used in making an estimate, then one should 
not exceed a ratio of 1:1 or 100%.  Extreme weights, λi, i=1,…,n, are therefore defined as those which 
exceed the right hand side values, C0i, i=1,…,n, to which they are associated in absolute value (Equation 5).  
C’s may represent covariance values, correlations or polynomial coefficients.  If a system is not identified 
at this point as being problematic its solution is deemed acceptable.  No further operations are done by 
RSOL. 
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Systems deemed unstable are combined into a single matrix (Equation 5) prior to being made positive 
definite and/or stabilized.  A matrix that contains all information accounts for instabilities present in the 
entire system of equations.  It also simplifies the stabilization process where entries of both left and right 
hand side component of the system are changed. 

Indefinite and Ill-conditioned Systems 

Identified problematic systems will undergo a stabilization process to be described in the next section; 
however, one prerequisite is calculating the Eigen Decomposition of the system.  If negative eigenvalues 
are detected, the system is indefinite and must first be made positive definite.  A process used in several 
other areas of numerical computing is to increase the diagonals of the system until it is positive definite. 

Diagonals are increased until all eigenvalues are positive.  One eigenvalue will however be close to zero 
and the system will be nearly singular or ill-conditioned.  This is due to the process of increasing diagonals: 
the magnitude of increments is slightly larger than the magnitude of the most negative eigenvalue, which 
has the effect of making that eigenvalue a very small positive.  Even though the system has been made 
positive definite, it can still result in negative Kriging variance.  Using the eigenvalues of the system, 
bounds on the variance can be defined.  Consider a linear system of equations Ax=b where A and b are 
populated with standardized covariance values.  Once solved, the Kriging variance is defined by Equation 
6.  Substituting Ax for b the second term is recognized as the quadratic form (Equation 7).  Positive 
definiteness of A ensures that the quadratic form is convex: the solution, x, is indeed minimizing variance 
and is guaranteed to be positive.  However, this does not ensure that Equation 6 is positive.  Using the 
minimum, λmin, and maximum, λmax, eigenvalues of A, bounds on the quadratic form can be calculated 
(Equation 8).  The quadratic form must also meet the criteria in Equation 9 so that the variance is always 
positive and less than the global variance, σ2. 
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 2 2 'SK x bσ σ= −   (6) 

 2 2 'SK x Axσ σ= −   (7) 

 ' ' 'min maxx x x Ax x xλ λ≤ ≤   (8) 

 20 'x Ax σ≤ ≤  (9) 

As the diagonals of A are increased, which is the technique used to enforce positive definiteness, the 
bounds in Equation 8 also become tighter.  The magnitude of x’x decreases.  Should a positive definite 
system cause a negative Kriging variance, diagonal elements can be increased until a positive variance is 
achieved.  Diagonal entries in A are equivalent to the variance, σ2, of a variable.  Changing diagonal entries 
does not imply a change in the variance of that variable.  The calculation of Kriging variance (Equation 10), 
with A* being the stabilized version of A, is not altered to accommodate changes made to these entries. 

 2 2 'SK x A xσ σ ∗= −   (10) 

Stabilization 

The scheme to stabilize a problematic system of equations was derived from the condition number of a 
matrix, which is a measure of precision loss for numerical analysis in using that matrix (Golub and Van 
Loan, 1989).  Condition number is calculated as the ratio of the maximum to the minimum absolute 
eigenvalue of a matrix so large condition numbers are an indication of an unstable system.  Stabilization 
accomplished in RSOL then amounts to lowering the condition number of the input system of linear 
equations.  This can be done by altering entries in the system so that its eigenvalues are driven towards a 
single value: the average of all eigenvalues of the system. 

Eigenvalues of a matrix can be related to its entries by a gradient, which is calculated using the similarity 
transform of the matrix to its Eigen Decomposition.  Letting the matrix A represent the combined system of 
equations, the Eigen Decomposition can be written as Equation 11 where P is an orthogonal matrix of 
eigenvectors and D a diagonal matrix of eigenvalues.  This equation can be rearranged and differentiated to 
give Equation 13, the gradient of each element of A with respect to each eigenvalue of D.  The gradient is 
calculated strictly in magnitude as directional information is derived from the eigenvalues themselves in 
Equation 14 where sgn is the sign operator, tr is the trace operator and n is the dimension of A. 
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Equation 13 and 14 can be combined into Equation 15 and used to simultaneously update all elements of A 
so that the eigenvalues converge towards tr(D)/n.  This will reduce the condition number and improve the 
stability of the system of equations that is contained within A.  The equation for updating A is shown in 
Equation 16.  An optimization method is required to calculate the step size, α, that makes the original 
system of equations stable, but does not alter it so much that all information is destroyed. 
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A secondary objective function must be derived in order to calculate the step size.  Unconstrained 
minimization of the condition number of A via Equation 16 would result in all eigenvalues being nearly 
equal; all dependencies in the system would be lost.  The objective function to be developed is based on the 
Kriging weights and variance.  Extreme Kriging weights are combined into a single measure of instability 
(Equation 17).  Kriging variance will not be negative for the stabilization process as any indefinite systems 
would have been adjusted; however, it is used as a penalty.  Because eigenvalues are driven towards a 
constant, the variance of the system increases.  Equation 18 is used as a measure of information lost and 
penalizes optimization of α.  One additional penalty is included in the objective function to provide the user 
with some control over how much a system is altered.  Equation 19 describes a log barrier function used in 
some constrained optimization algorithms (Boyd and Vandenberghe, 2004).  The measure of instability to 
be minimized is thus the sum of Equation 17, 18 and 19 (Equation 20). 
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In Equations 17 to 20, n’ is the dimension of the original system of equations, λk and Ck are solution 
weights and right hand side values, σ0 and σα are the initial Kriging variance and that at α, αmax is the 
maximum permitted change that is to be made to elements of A, and Wα is the extreme weight measure for 
the solution at step α.  Note that Equation 18 assumes a standardized variance.  Also note that δ in Equation 
17 is calculated once for the initial system.  In this way, initial problematic weights detract from the 
measure of instability after they are corrected, acting like a momentum term in optimization. 

Minimization of Equation 20 will result in mitigation of extreme weights at the expense of an increase in 
Kriging variance.  Moreover, increasing the variance is implying that less information than was indicated 
by the initial system is actually known. 

Unstable Systems Revisited 

RSOL will be applied to the three problematic systems that were discussed above.  Several aspects of the 
algorithm will be reviewed: shape of the objective function; change in solution weights and Kriging 
variance with α; solutions before and after stabilization; and runtimes.  To look at the objective function a 
range of α values were evaluated along the gradient.  Points along the function that were actually evaluated 
during optimization will be highlighted.  Runtime will be evaluated by solving the same system a fixed 
number of times using a basic solver and using RSOL.  Runtime will be longer for RSOL because of the 
added stabilization procedures. 

The solution to the simple 2-data case (Equation 21) is more intuitive given the spatial orientation of the 
conditioning data and estimate.  The maximum change made to any of the system entries was 0.033, which 
had the effect of changing solution weights by 0.103.  In a spatial context, these changes are equivalent to 
dispersing the data that comprise the system, moving the two conditioning data further apart and further 
from the estimate.  This has the effect of reducing redundancy in the system while incurring a slight 0.001 
increase in Kriging variance for this example (Figure 2).  Note that variance is plotted on the right y-axis 
for clarity.  Minimization of the objective function only required 9 iterations; however, each iteration 
involves solving the system. 

 1.000 0.956 0.137 0.203
0.956 1.000 0.070 0.200
⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (21) 
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Example two provides a more problematic case as the Kriging variance is negative.  RSOL detects this 
problem and increases the diagonal entries until the variance is positive.  In this case, the initial system is 
not indefinite, but it may be ill-conditioned.  Diagonals were increased from one to a value of 1.350.  If the 
system is solved with this change, the resulting Kriging variance is 0.123.  Once the variance was made 
positive practically no change was required to further improve the system (Equation 22).  4 out of 5 weights 
are not extreme by the definition given above, although the third weight is borderline.  Using a standard 
solver, only 2 out of 5 weights were not extreme.  Because nearly no change was observed for this example, 
aside from increasing diagonal entries, a graph will not be shown.  Comparison can be made between 
Equation 4 and 22. 

 

1.3502 0.5016 0.2256 0.1198 0.3301 0.8244
0.5016 1.3502 0.4954 0.5687 0.2741 0.3743
0.2256 0.4954 1.3502 0.8323 0.7077 0.0511
0.1198 0.5687 0.8323 1.3502 0.3589 0.1134
0.3301 0.2741 0.7077 0.3589 1.3502 0.09

− −⎡ ⎤
⎢ ⎥−
⎢ ⎥− −
⎢ ⎥−⎢ ⎥− − − −⎣ ⎦

0.9548
0.1049
0.0428

0.1905
56 0.2940

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  (22) 

Results for the LVA example are very similar to the Bayesian updating example: diagonal entries were 
increased until a positive variance was achieved and then stabilization was applied.  Again, very little 
change after increasing the diagonals was made.  Table 3 can be used to compare the results of solving the 
system in its initial state and after stabilization.  Very little change can be seen in the right hand side 
covariances.  Diagonal entries were increased from 1 to 1.494.  A positive Kriging variance is realized 
along with an estimate that is more acceptable than that initially calculated.  Only two of ten weights are 
extreme as compared to six of ten prior to stabilization.  Those still extreme have been substantially 
reduced relative to the right hand side covariance. 

 Table 3: LVA example solved with RSOL. 
    Initial  RSOL 

Data X Y Value Weight Covariance  Weight Covariance 

Conditioning 

10 1 6 -0.445 0.869  0.223 0.868 
10 5 10 0.921 0.893  0.233 0.891 
18 1 -8 0.958 0.649  0.221 0.649 
18 5 -5 -0.300 0.623  0.144 0.622 
2 1 -5 -0.281 0.635  0.133 0.635 

10 10 -3 -1.325 0.194  -0.311 0.194 
2 5 -10 1.281 0.599  0.185 0.599 

18 10 -4 -0.025 0.559  0.089 0.559 
2 10 -12 0.702 0.475  0.193 0.475 

10 15 12 -0.665 0.006  -0.305 0.006 
Estimate 11 1 -23.36   -6.73   
Variance   -0.519   0.091   

A runtime study was carried out with these three systems to give an idea of how solving and stabilizing 
problematic systems compares to just solving those systems.  Runs were done on a machine with an Intel 
Core 2 Duo T5500 processor rated at 1.67 GHz.   When solving stable systems, RSOL compares to any 
basic solver in runtime; however, when dealing with unstable systems, it takes 50 to 60 times longer 
(Figure 3). 

Conclusion 

A method of automatically detecting and adjusting problematic systems of equations that are encountered 
in geostatistical modeling practices has been presented.  RSOL detects extreme weights, negative 
estimation variance and indefinite systems and adjustments are made to mitigate the problems without user 
intervention.  A measure of instability was created and used as an objective function to minimize indicators 
of unstable systems.  Three examples showed that extreme weights are mitigated.  Negative variance and 
indefinite systems are fixed by increasing diagonal entries, which did not show a negative impact on 
resulting estimates.  One disadvantage is a substantially longer run-time when dealing with unstable 
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systems; however, identification and finding root causes to problematic systems by hand will not be 
required. 
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Figure 1: LVA field and data configuration.  Bullets are conditioning data, the square is the estimate 
location, and arrows indicate major direction of anisotropy. 
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Figure 2: Stabilization of 2-data example. 
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